Systematic Investigation of Electronic and Molecular Structures for the First Transition Metal Series Metallocenes $M(C_5H_5)$ **₂ (M = V, Cr, Mn, Fe, Co, and Ni)**

Zhen-Feng Xu,†,‡ Yaoming Xie,† Wen-Lin Feng,‡ and Henry F. Schaefer, III*,†

*Center for Computational Quantum Chemistry, Uni*V*ersity of Georgia, Athens, Georgia 30602, and Department of Applied Chemistry, Beijing Uni*V*ersity of Chemical Technology, Beijing 100029, PR China*

*Recei*V*ed: September 3, 2002*

The electronic structures of the first-row transition-metal metallocenes, MCp_2 ($M = V$, Cr, Mn, Fe, Co, and Ni), have been studied using a broad range of density functional methods with flexible double-*ú* plus polarization (DZP) basis sets. Geometrical parameters of the *D*⁵*^h* and *D*⁵*^d* conformations (and structures of lower symmetry for $CrCp₂$ and $CoCp₂$) were fully optimized. For the ferrocene system, best characterized experimentally, the B3LYP, BLYP, and BP86 methods give structures in good agreement with experiment. For the $D_{5h}-D_{5d}$ energy difference, the same three methods predict 0.75 kcal/mol (B3LYP), 0.99 kcal/mol (BLYP), and 1.13 kcal/mol (BP86). The cyclopentadienyl rings are very nearly planar; the angles of the C-H bond out of the Cp ring are less than 1° for all metallocenes except ferrocene. The C-H bonds are bent slightly away from the metal for V and Mn, slightly toward the metal for Fe and Ni, and virtually not at all from chromocene. According to the energetic and vibrational analyses, the D_{5h} conformations are found to be the global minima, leaving open the possibility that the D_{5d} conformations may exist under certain conditions. However, MnCp₂ probably exists as a mixture of both *D*⁵*^h* and *D*⁵*^d* conformations, because both are genuine minima with only a small energy difference. The predicted B3LYP energy differences $(D_{5h}-D_{5d})$ for the six metallocenes are 0.29 (V), 0.28 (Cr), 0.13 (Mn), 0.75 (Fe), 0.38 (Co), and 0.23 kcal/mol (Ni). A number of reassignments of experimental vibrational bands are suggested. The molecular orbital energy level diagrams and the electron configurations for the metallocenes are compared. This information, obtained in a consistent manner across the first transition metal series, is helpful for discussion of the bonding characters and the chemical reactivities of these metallocenes.

Introduction

The compound dicyclopentadienyliron $Fe(C₂H₅)₂$, or $FeCp₂$, was discovered nearly simultaneously by two research groups in 1951 .^{1,2} Its sandwich structure was identified by Wilkinson, Rosenblum, Whiting, and Woodward³ as well as Fischer and $Pfab⁴$ in 1952, and was named ferrocene.⁵ Since then, the ferrocene-like dicyclopentadienylmetal compounds, namely metallocenes, have attracted wide interest from both experimental and theoretical chemists. There are many studies of the structures and spectra of metallocenes. In early 1956 Dunitz, Orgel, and Rich⁶ demonstrated a staggered structure for crystalline ferrocene by X-ray diffraction, and then in 1966 Bohn and Haaland⁷ showed that the free molecule has an eclipsed equilibrium configuration by means of gas-phase electron diffraction. The geometric parameters and rotation barrier (0.9 \pm 0.3 kcal/mol) of the free ferrocene molecule were also determined by Haaland and Nilsson.8 The Raman and infrared spectra of ferrocene were reported by Lippincott and Nelson⁹ as early as 1955 and 1958, and then by Bodenheimer and Low in 1969 and 1973.¹⁰ Following the early experimental studies of ferrocene, the discoveries of other metallocenes for the firstrow transition metals, such as VCp₂, CrCp₂, MnCp₂, CoCp₂, and NiCp₂, appeared one after another, $11-\overline{2}1$ and some experimental molecular properties were reported in these studies.

Early theoretical studies gave molecular orbital descriptions of ferrocene via semiempirical methods.²²⁻²⁵ During the past two decades, more reliable ab initio theoretical investigations of the first-row transition metal metallocenes have been published.²⁶⁻³⁵ With the rapid development of information technology, these studies show that computational quantum chemistry is able to reveal the nature of the electronic structure of the metallocenes. In 1991, Park and Almlof²⁹ predicted values of 1.65-1.67 Å (experimental value is 1.66 Å) for the Fe-ring distance in ferrocene using the MCPF (modified coupled-pair functional) approach with all 66 valence electrons correlated. And then in 1995 Pierloot, Persson and Roos³⁰ predicted an Fe-ring distance of 1.643 Å and bond energy of 32.3 kcal/mol (experimental value 36.4 ± 5 kcal/mol) using the complete active space (CAS)SCF method followed by second-order perturbation theory (CASPT2). Thus far, the most accurate theoretical iron-cyclopentadienyl equilibrium distance in ferrocene was predicted by Koch, Jorgensen, and Helgaker in 1996.³¹ They computed the Fe-ring distance to be 1.660 Å at the CCSD(T) level of theory employing a triple-*ζ* valence basis set augmented with a double set of polarization functions (TZV2P+f). This Koch/Jorgensen/Helgaker structure is in excellent agreement with experiment. Recently, density functional theory (DFT) methods have also been widely used to investigate transition metal complexes. Beginning in 1991, Ziegler and co-workers³² applied the local-density approximation (LDA) and nonlocal (NL) correction methods to study the geometry of ferrocene. In 1997 Mayor-Lopez and Weber³³ optimized four metallocene structures (MCp₂, $M = V$, Mn, Fe, Ni) at the BPW91 level of theory. These studies show that the less costly DFT results are also in reasonable agreement with experiment.

[†] University of Georgia.

[‡] Beijing University of Chemical Technology.

TABLE 1: Structures, Total Energies, and the Relative Energies (ΔE) for the D_{5h} and D_{5d} Structures of Ferrocene

	HF	BHLYP	B3LYP	BLYP	BP86	LSDA	exp ^c
			D_{5h}				
Fe $\mathsf{-Cp}^a$ Å	1.865	1.725	1.681	1.678	1.644	1.585	1.660
$Fe-C$, $Å$	2.219	2.105	2.077	2.082	2.053	1.999	2.064 ± 0.003
$C-C, A$	1.413	1.418	1.434	1.448	1.446	1.432	1.440 ± 0.002
$C-H, \AA$	1.074	1.077	1.085	1.093	1.094	1.095	1.104 ± 0.006
\angle Cp,H, ^b deg	0.58	1.33	1.18	0.90	1.12	1.64	3.7 ± 0.9
E , hartree	-1646.84239	-1650.51995	-1650.88525	-1650.75354	-1651.09888	-1646.85498	
			D_{5d}				
	1.866	1.726	1.684	1.682	1.649	1.591	
Fe-Cp, ^a Å Fe-C, Å C-C, Å	2.220	2.106	2.080	2.085	2.057	2.003	
	1.413	1.418	1.433	1.448	1.445	1.431	
$C-H, \AA$	1.074	1.077	1.085	1.093	1.094	1.095	
\angle Cp,H, ^b deg	0.55	1.45	1.46	1.20	1.53	2.11	
E , hartree	-1646.84224	-1650.51932	-1650.88405	-1650.75196	-1651.09708	-1646.85254	
ΔE , kcal/mol	0.10	0.39	0.75	0.99	1.13	1.53	
ΔE , kcal/mol (with ZPVE)	0.04	0.27	0.63	0.83	0.97	1.29	0.9 ± 0.3

^a Denotes the distance from the Fe atom to the center of cyclopentadienyl ring. *^b* Denotes the angle of the C-H bond out of the cyclopentadienyl ring, and the angle is defined as positive if the H atom tilts toward the metal atom. *^c* References 8 and 12.

Despite so many experimental and theoretical investigations of the molecular structures of metallocenes, there is still controversy concerning the description of the electronic structures of these important systems.^{36,37} There are almost no reliable orbital energies reported for the other metallocenes, and chemists usually discuss metallocene bonding and essential features on the basis of the molecular orbital diagram of ferrocene.38 This may not be appropriate, because the other metallocenes have different numbers of valence electrons from ferrocene, and they could have somewhat different molecular orbital diagrams. The MO level differences could cause not only the necessary change of electron configuration but also possible changes in the symmetry of the molecular structures. Therefore, it is desirable to investigate the electronic structures of the metallocenes systematically to discuss the properties, bonding, and reactions of metallocenes.

In view of the good performance of DFT for ferrocene, we were instigated to investigate the electronic structures of the first-row transition-metal metallocenes using density functional theory. In the present study, we will report DFT results for six first-row transition-metal metallocenes, namely, $VCp₂$, $CrCp₂$, $MnCp_2$, FeC p_2 , CoC p_2 , and NiC p_2 . The next section of this paper will describe the theoretical methods briefly, and the third section will give the theoretical results, including a discussion and comparison of the electronic structures of these six firstrow transition-metal metallocenes.

Theoretical Methods

In this study, double-*ú* plus polarization (DZP) basis sets are used. For the carbon and hydrogen atoms, the DZP basis sets are Dunning's standard double-ζ contraction³⁹ of Huzinaga's primitive sets40 with one set of pure spherical harmonic polarization functions added with orbital exponents $\alpha_d(C) = 0.75$ and $\alpha_{p}(H) = 0.75$. For the first-row transition-metals V, Cr, Mn, Fe, Co, and Ni, Wachters' primitive sets⁴¹ are used in our loosely contracted DZP basis set but augmented by two sets of p functions and one set of d functions and contracted following Hood, Pitzer, and Schaefer,⁴² and designated (14s11p6d/10s8p3d).

Electron correlation effects were included employing density functional theory methods (DFT), which have been widely recommended as a practical and effective computational tool, especially for organometallic compounds.⁴³ Among the density functional approaches, the most reliable approximation is often thought to be the hybrid HF/DFT method using the combination of the three-parameter Becke functional with the Lee-Yang-

Figure 1. Two conformations of the metallocenes.

Parr nonlocal correlation functional known as B3LYP.^{44,45} Also, to compare the various functionals, four other DFT methods, i.e., BHLYP,⁴⁶ BLYP,^{45,47} BP86,^{47,48} LSDA,⁴⁹ as well as the Hartree-Fock (HF) method, were also used for ferrocene.

We fully optimize the geometries of the six first-row transition-metal metallocenes, VCp_2 , $CrCp_2$, $MnCp_2$, $FeCp_2$, CoCp₂, and NiCp₂, and evaluate the vibrational frequencies for both of their common conformations by evaluating analytically the second derivatives of the energy with respect to the nuclear coordinates. The corresponding infrared intensities are also evaluated analytically. For the open shell systems, unrestricted DFT methods are employed. All the computations were carried out with the Gaussian94 program,⁵⁰ in which the fine grid (75 302) is the default for evaluating integrals numerically, and the tight $(10^{-8}$ hartree) designation is the default for the SCF convergence.

Results and Discussions

1. Geometry of Ferrocene. To begin, we optimized the geometries of ferrocene by using six methods with the DZP basis set. Ferrocene is a closed shell system, which has two widely discussed conformations, i.e., eclipsed (*D*5*h*) and staggered (D_{5d}). The electronic configurations were the accepted $(a_1')^2(e_2')^4$ for D_{5h} and $(a_{1g})^2(e_{2g})^4$ for D_{5d} . Figure 1 sketches the *D*⁵*^h* and *D*⁵*^d* conformations and the atom-numbering system. Table 1 lists the main geometric parameters and the energies for the D_{5h} and D_{5d} conformations of ferrocene. The D_{5h} structure is predicted to be the global minimum for the free

TABLE 2: Harmonic Vibrational Frequencies (cm⁻¹) and Infrared Intensities^{*a***} (km⁻¹, in Parentheses) for the** D_{5h} **Structure of Ferrocene**

no.	sym	HF	BHLYP	B3LYP	BLYP	BP86	LSDA	exp ^b	exp ^c
6	${a_1}^{\prime\prime}$	20(0)	34(0)	49(0)	56(0)	63(0)	73(0)		\leq 20
22	e_1'	144(0)	159(0)	161(0)	157(1)	166(1)	174(1)	179	180
$\overline{4}$	${a_1}'$	236(0)	267(0)	287(0)	291(0)	308(0)	339(0)	309	315
16	$e_1^{\prime\prime}$	304(0)	350(0)	355(0)	345(0)	367(0)	404(0)	389	391
11	$a_2^{\prime\prime}$	411(28)	456(0)	461(13)	453(26)	482 (37)	536 (62)	478	485
21	e_1'	404(6)	462(21)	472 (27)	463(26)	491 (29)	540 (36)	492	504
34	$e_2^{\prime\prime}$	686(0)	633(0)	590(0)	553(0)	560(0)	581(0)	569	
28	e_2'	675(0)	637(0)	593(0)	554(0)	561(0)	581 (0)	597	598
14	$e_1^{\prime\prime}$	888 (0)	854(0)	812 (0)	775(0)	779(0)	789 (0)	844	
$\sqrt{2}$	a_1'	899 (0)	863(0)	826(0)	794 (0)	800 (0)	803 (0)	814	
$\overline{9}$	a_2^2	893 (388)	862 (180)	827 (94)	797 (66)	804 (56)	813 (46)	820	$820 - 860$ ^e
33	$e_2^{\prime\prime}$	930(0)	882 (0)	835(0)	795(0)	793(0)	797(0)	885^d	
19	e_1'	911(2)	880 (5)	843 (6)	809(6)	816(7)	826(9)	855	
27	e_2'	931(0)	890 (0)	850 (0)	818 (0)	817(0)	820 (0)	897 ^d	
31	$e_2^{\prime\prime}$	1034(0)	945(0)	890 (0)	840 (0)	843(0)	856(0)	1055^d	
25	e_2'	1014(0)	957(0)	895(0)	846 (0)	849 (0)	860(0)	1058^{d}	900 ^f
13	$\overline{e_1}$ "	1103(0)	1059(0)	1011(0)	972(0)	977(0)	981 (0)	998	1010 ^g
18	e_1'	1108(35)	1064(29)	1017(25)	980 (21)	985 (20)	990 (22)	1005	
30	$\mathrm{e_{2}}^{\prime\prime}$	1164(0)	1101(0)	1060(0)	1027(0)	1026(0)	1016(0)	1189^{d}	1060
24	e_2'	1153(0)	1109(0)	1067(0)	1035(0)	1034(0)	1025(0)	1191^d	
3	a_1'	1220(0)	1184(0)	1130(0)	1083(0)	1095(0)	1129(0)	1102	
10	$a_2^{\prime\prime}$	1217(0)	1183(15)	1131 (28)	1085 (32)	1098 (32)	1134 (29)	1110	
7	a_2'	1394(0)	1325(0)	1267(0)	1224(0)	1214(0)	1199(0)	1250	
5	${a_1}^{\prime\prime}$	1393(0)	1324(0)	1267(0)	1224(0)	1215(0)	1199(0)	1255	
32	$\mathsf{e_2}^{\prime\prime}$	1585(0)	1443(0)	1386(0)	1328(0)	1346(0)	1386(0)	1351	
26	e_2'	1514(0)	1469(0)	1405(0)	1348(0)	1366(0)	1406(0)	1356	
15	$e_1^{\prime\prime}$	1594(0)	1521(0)	1446(0)	1387(0)	1389(0)	1399(0)	1410	
20	e_1'	1598(0)	1522(1)	1447(1)	1388(2)	1390(2)	1402(4)	1410	
29	$\mathsf{e_2}^{\prime\prime}$	3396 (0)	3331(0)	3228(0)	3138(0)	3147(0)	3159(0)	3085	
23	e_2'	3396(0)	3332(0)	3230(0)	3139(0)	3148(0)	3160(0)	3100	
12	$e_1^{\prime\prime}$	3412(0)	3346(0)	3242(0)	3151(0)	3160(0)	3170(0)	3086	
17	$e_1^{\prime\prime}$	3413 (20)	3347 (9)	3244(13)	3153(20)	3162(22)	3172(5)	3077	
8	${a_2}^{\prime\prime}$	3425(1)	3359(0)	3254(0)	3162(2)	3171(3)	3181(0)	3103	
$\mathbf{1}$	a_1'	3426(0)	3360(0)	3255(0)	3164(0)	3172(0)	3182(0)	3110	

a For the degenerate frequencies (e₁', e₁'', e₂', e₂''), the IR intensities in this table are for one component only. *b* Reference 10. *c* Reference 51. *^d* These values were re-assigned by ref 34. See text. *^e* These frequencies were assigned to the vibrational modes 2, 9, 14, 19, 27, and 33. See ref 51. *f* This frequency was assigned to the vibrational modes 14, 19, 25, and 33. See ref 51. *^g* This frequency was assigned to the vibrational modes 13 and 18. See ref 51.

ferrocene molecule with the H-F and all the DFT methods. Compared with Haaland and Nilsson's experimental energy difference between the D_{5h} and D_{5d} conformations ($\Delta E = 0.9$) \pm 0.3 kcal/mol),⁸ the Hartree-Fock method predicts a value that is too small (0.1 kcal/mol). Along with the increasing the DFT component in the exchange functional, the energy difference ∆*E* increases gradually. It is predicted to be 0.39 kcal/ mol by the BHLYP method, 0.75 kcal/mol by B3LYP, and 0.99 kcal/mol by BLYP. The BP86 and LSDA methods predict an even larger energy difference, i.e., 1.13 and 1.53 kcal/mol, respectively. The correction for zero point vibrational energies (ZPVE) decreases the energy difference, and it becomes smaller, namely, 0.04, 0.27, 0.63, 0.83, 0.97, and 1.29 kcal/mol by the HF, BHLYP, B3LYP, BLYP, BP86, and LSDA methods, respectively. Among these methods, the B3LYP, BLYP, and BP86 results are in agreement with the Haaland-Nilsson experiment (0.9 \pm 0.3 kcal/mol). With all six methods, the differences of bond distances between the *D*⁵*^h* and *D*⁵*^d* conformations are very small. For the C-C and C-H bond distances, they are almost identical (within 0.001 Å). For the Fe $\text{--}C$ bond distance, those of the D_{5d} structure are slightly longer than those of D_{5h} (in the range $0.001-0.004$ Å). The theoretical Fe-C bond lengths are evaluated by the different methods in the ordering HF > BHLYP > BLYP > B3LYP > BP86 > LSDA. Compared with experiment, the deviations are 0.155, 0.041, 0.018, 0.013, -0.011 , and -0.065 Å, respectively. It is apparent that the theoretical distances at the B3LYP and BP86 levels are closest to the experimental values. For the $C-C$ bond length, the theoretical values closest to the experiment are also the

B3LYP and BP86 methods, with the deviation of only -0.006 and +0.006 Å, respectively. Thus, the B3LYP and BP86 methods appear to be the most reliable for predicting the molecular structures of metallocenes.

2. Harmonic Vibrational Frequencies for Ferrocene. In Table 2, the harmonic vibrational frequencies predicted by all six methods for *D*⁵*^h* ferrocene are listed and compared with experiment. The first column is the conventional numbering for the vibrational modes of the metallocenes suggested by Lippincott and Nelson⁹ and by Bodenheimer and Low.¹⁰ The farright two columns are experimental assignments.10,51 As early as the 1950s-1960s, some Raman and infrared spectra of ferrocene were reported,⁹ and in 1973 comprehensive assignments of the vibrational modes for ferrocene were suggested by Bodenheimer and Low.10 The latter are listed in Table 2. The present DFT vibrational frequencies are in fairly good agreement with the experimental assignments. Among the theoretical methods, B3LYP and BP86 predict the vibrational frequencies closest to experiment. However, for the in-plane CH bending (modes 24 and 30), CH wagging (modes 25 and 31), and in-plane ring distortion (modes 27 and 33), the experimental assignments appear too large. These deviations were previously pointed out by Berces, Ziegler, and Fan (1994) in their important theoretical study.32 They suggested the reassignment of 1058 and 1055 cm^{-1} to the modes 24 and 30 $(C-H$ bending), and 897 and 885 cm⁻¹ to the modes 25 and 31 (C-H bending), but did not assign the observed 1191 and 1189 cm^{-1} bands to fundamentals. After the reassignments, the comparison between the theoretical results and the experimental

TABLE 3: Harmonic Vibrational Frequencies (cm⁻¹) and Infrared Intensities^{*a***} (km⁻¹, in Parentheses) for the** D_{sd} **Structure of Ferrocene**

no.	sym	HF	BHLYP	B3LYP	BLYP	BP86	LSDA
6	a_{1u}	12i	46i	56i	61i	64i	73i
22	e_{1u}	143(0)	159(0)	166(0)	162(0)	172(1)	178(1)
$\overline{4}$	a_{1g}	236(0)	268(0)	289(0)	292(0)	309(0)	340(0)
16	e_{1g}	303(0)	352(0)	366(0)	363(0)	385(0)	422(0)
11	a_{2u}	411 (29)	455(0)	458 (12)	448 (26)	476 (37)	526 (63)
21	e_{1u}	403(6)	455(21)	451 (30)	430(32)	455 (36)	498 (45)
34	e_{2u}	686(0)	639(0)	602(0)	565(0)	572 (0)	593(0)
28	e_{2g}	675(0)	631(0)	583 (0)	544(0)	551(0)	568(0)
14	e_{1g}	887 (0)	849 (0)	808 (0)	771(0)	776(0)	785(0)
$\sqrt{2}$	a_{1g}	899(0)	862(0)	828 (0)	794(0)	802(0)	802(0)
9	a_{2u}	893 (388)	858 (181)	820 (95)	787 (67)	794 (57)	800 (48)
33	e_{2u}	930(0)	882 (0)	834(0)	794(0)	791 (0)	793 (0)
19	e_{1u}	910(2)	877(5)	840 (6)	804(6)	814(8)	822 (10)
27	e_{2g}	931(0)	888 (0)	850 (0)	816(0)	816(0)	820 (0)
31	e_{2u}	1034(0)	952(0)	890 (0)	839(0)	845(0)	857(0)
25	e_{2g}	1009(0)	943(0)	888 (0)	837(0)	842(0)	852(0)
13	e_{1g}	1103(0)	1057(0)	1011(0)	973(0)	978(0)	982(0)
18	e_{1u}	1108(35)	1064(28)	1017(24)	978 (22)	982 (21)	987 (22)
30	e_{2u}	1166(0)	1106(0)	1065(0)	1034(0)	1033(0)	1024(0)
24	e_{2g}	1151(0)	1105(0)	1063(0)	1030(0)	1029(0)	1018(0)
3	a_{1g}	1220(0)	1185(0)	1132(0)	1085(0)	1098(0)	1132(0)
10	a_{2u}	1217(0)	1183(15)	1132(29)	1086(34)	1100(35)	1135(31)
7	a_{2g}	1393(0)	1323(0)	1264(0)	1221(0)	1212(0)	1196(0)
5	a_{1u}	1393(0)	1323(0)	1265(0)	1222(0)	1212(0)	1196(0)
32	e_{2u}	1584(0)	1470(0)	1402(0)	1341(0)	1359(0)	1399(0)
26	e_{2g}	1514(0)	1443(0)	1390(0)	1337(0)	1356(0)	1398(0)
15	e_{1g}	1594(0)	1520(0)	1447(0)	1389(0)	1392(0)	1404(0)
20	e_{1u}	1597(0)	1522(1)	1445(1)	1385(1)	1387(1)	1397(3)
29	e_{2u}	3395(0)	3332(0)	3230(0)	3139(0)	3149(0)	3160(0)
23	e_{2g}	3396(0)	3332(0)	3230(0)	3140(0)	3149(0)	3160(0)
12	e_{1g}	3412(0)	3347(0)	3243(0)	3153(0)	3162(0)	3172(0)
17	e_{1u}	3413 (20)	3347 (9)	3244 (13)	3153(20)	3162(21)	3172(5)
8	a_{2u}	3425(1)	3359(0)	3255(1)	3164(2)	3173(3)	3182(1)
$\mathbf{1}$	$\rm a_{1g}$	3425(0)	3360(0)	3256(0)	3165(0)	3173(0)	3182(0)

a For the degenerate frequencies (e₁', e₁'', e₂', e₂''), the IR intensities in this table are for one component only.

assignments is much improved. However, modes 27 and 33 (ring torsion) have no experimental assignments. In 2000, Kemner et al. reported vibrational spectra from inelastic neutron scattering (INS).⁵¹ They suggested that the frequency for the torsion mode (v_6) is less than 20 cm⁻¹, a feature not assigned in ref 10. They assigned the feature at 1060 cm^{-1} to modes 24 and 30 (C-H bending), 1010 cm^{-1} to modes 13 and 18 (also C-H bending), and 900 cm⁻¹ to modes 14, 19, 25, and 31 (C-H wagging). They also assigned a strong and very broad peak $(820-860 \text{ cm}^{-1})$ in the INS spectrum roughly to the contributions of six vibrational modes, which are modes 2, 9, 14, 19 (C-H wagging), 27, and 33 (ring distortion). These assignments make for a closer concordance with our predictions, but the resolution of the INS spectra is so low that the assignments to the vibrational fundamentals for ferrocene have not yet been completed. Our theoretical prediction may thus provide useful assistance for further experimental studies. Our theoretical harmonic vibrational frequencies for the eclipsed (D_{5h}) ferrocene are all real (Table 2), indicating it is a genuine minimum. Our theoretical harmonic vibrational frequencies for the staggered (D_{5d}) ferrocene (Table 3) are very similar to those of the D_{5h} structure, but all six methods predict a small imaginary frequency, indicating that the staggered structure of the free ferrocene molecule is a transition state. The normal mode related to the imaginary vibrational frequency is the expected ring rotation, which leads to the D_{5h} structure. However, in light of the very small energy difference between the D_{5d} and D_{5h} structures, and the very small magnitude of the imaginary frequency of D_{5d} , the D_{5d} structure might be observed in the condensed phase, as apparently shown by the Dunitz/Orgel/ Rich crystal structure.6

Figure 2. Molecular orbital energy level diagram for ferrocene.

3. Geometries for the Metallocenes $M(Cp)_2$ **(** $M = V$ **,** Cr **, Mn, Co, Ni).** Because the B3LYP method predicts properties for ferrocene in reasonable agreement with available experi-

Figure 3. Sketches of the valence molecular orbitals for ferrocene.

ments, only the B3LYP method was used to investigate the other metallocenes in this research. For the other first-row transition metal metallocenes, our theoretical structures and total energies at the B3LYP DZP level of theory, along with the available experimental results, are displayed in Table 4. Unlike ferrocene, all the other metallocenes are open shell systems. As seen in Table 4, three of the open-shell metallocenes $(M = V, Mn, Ni)$ have two very low-lying conformations: eclipsed (*D*⁵*h*) and staggered (D_{5d}), just like ferrocene. The total energies of the D_{5h} structures are uniformly lower than their corresponding D_{5d} structures, but the energy differences are smaller than that of ferrocene at the same B3LYP level of theory. These ∆*E* values are 0.29 kcal/mol for VCp₂, 0.13 kcal/mol for MnCp₂, 0.75 kcal/ mol for FeCp₂, and 0.23 kcal/mol for NiCp₂. Therefore, we can view the *D*⁵*^h* structures of the metallocene as somewhat more stable than the D_{5d} structures. However, because these energy differences between *D*⁵*^h* and *D*⁵*^d* are so small, the *D*⁵*^d* conformation may be observed under certain conditions. As we mentioned above, ferrocene is found to be a D_{5h} molecule in the gas phase⁸ but apparently favors the D_{5d} conformation in the condensed phase.⁶

The geometric parameters of the D_{5h} and D_{5d} conformations are very similar. The bond lengths $(M-C)$ between the metal atom and the carbon atoms for the eclipsed *D*⁵*^h* conformations

TABLE 4: Structures, Total Energies, and the Relative Energy (∆*E***) of Metallocenes Optimized at the B3LYP DZP Level of Theory***^a*

			VCp ₂		MnCp ₂					NiCp ₂				
		D_{5h} A_1'	D_{5d} ${}^4A_{1g}$		exp ^b	D_{5h} $^{6}A_{1}'$		D_{5d} ${}^6\mathrm{A}_{1\mathrm{g}}$		exp ^c	D_{5h} A_1'		D_{5d} ${}^3A_{1g}$	$exp t^d$
M –Cp, \AA M-C, Å C-C. Å C-H, Å \angle Cp,H, deg E, hartree ΔE , kcal/mol ΔE , kcal/mol (with ZPVE)	1.965 2.310 1.429 1.086 -0.1 0.00 0.00	-1331.18584	1.967 2.312 1.428 1.086 -0.1 -1331.18538 0.29 0.02		1.928(6) 2.280(5) 1.434(3) 1.133(14) $-1.5(1.6)$	2.082 2.411 1.429 1.086 -0.8 -1538.15552 0.00 0.00		2.083 2.412 1.429 1.086 -0.8 -1538.15532 0.13 0.04	0(3)	2.046(8) 2.380(6) 1.429(8) 1.125(10)	1.867 2.228 1.429 1.085 0.5 -1895.47856 0.00 0.00		1.868 2.229 1.429 1.085 0.5 -1895.47820 0.23 0.15	1.828 2.196(8) 1.430(3) 1.083(19) 0.3(2.9)
								CrCp ₂						
			symmetry constrained					C_{2v}			C_{2h}			
		\mathcal{D}_{5h} $3A_1'$			D_{5d} ${}^3\mathrm{A}_{1\mathrm{g}}$	${}^{3}B_1$		3A_1			3A_g		${}^{3}B_{g}$	exp ^e
$Cr-Cp, \overline{A}$ $Cr-C_1$, \dot{A} $Cr-C2(C5)$, \AA		1.896 2.251		1.897 2.252		2.136 2.178		2.259 2.216		2.255 2.216		2.147 2.183		1.798(4) 2.169(4)
$Cr-C_3(C_4)$, \AA $C_1 - C_2(C_1 - C_5)$, \AA $C_2 - C_3(C_5 - C_4)$, Å C_3-C_4 , \AA		1.427		1.427		2.248 1.442 1.431 1.423		2.148 1.426 1.437 1.444		2.157 1.426 1.437 1.443		2.244 1.441 1.431 1.423		1.431(2)
C_1 –H, \AA $C_2(C_5) - H, \,\AA$ $C_3(C_4) - H$, \dot{A} \angle Cp,H, deg		1.086 0.00		1.086 0.04		1.085 1.085 1.086		1.086 1.086 1.085		1.086 1.086 1.085		1.085 1.085 1.086		1.108(7) 2.9(1.1)
E, hartree ΔE , kcal/mol ΔE , kcal/mol (with ZPVE)		-1431.61860 5.26		5.55	-1431.61815	-1431.62699 0.00 0.00		-1431.62684 0.09 -0.15		0.75 0.49	-1431.62580	0.75 0.43	-1431.62579	
								CoCp ₂						
			symmetry constrained				C_{2v}				C_{2h}			
		D_{5h} (² E ₁ ")		D_{5d} (² E_{1g})		${}^{2}B_{2}$		2A_2	${}^{2}A_{g}$		${}^{2}B_{g}$		exp ^e	$exp t^f$
$Co-Cp, Å$ $Co-C1$, $Å$ $Co-C_2(C_5)$, \AA $Co-C3(C4)$, \AA		1.774 2.151		1.777 2.153	2.176 2.117 2.166		2.106 2.175 2.143		2.177 2.119 2.168		2.111 2.178 2.143		1.739(2) 2.119(3)	2.113(3)
$C_1 - C_2(C_1 - C_5)$, Å $C_2 - C_3(C_5 - C_4)$, Å C_3-C_4 , \AA		1.431		1.430	1.427 1.447 1.412		1.438 1.417 1.450		1.426 1.447 1.412		1.438 1.416 1.450		1.429(2)	1.430(3)
C_1 –H, Å $C_2(C_5)$ -H, \AA $C_3(C_4) - H$, \AA		1.085		1.085	1.085 1.086 1.085		1.086 1.085 1.085		1.085 1.086 1.085		1.086 1.085 1.085		1.111(8)	1.095(16)
\angle Cp,H, deg E, hartrees ΔE , kcal/mol ΔE , kcal/mol (with ZPVE)		0.86 -1769.92553 2.15		0.91 -1769.92493 2.52	0.00 0.00	-1769.92895	< 0.01 -0.06	-1769.92894	-1769.92835 0.38 0.27		-1769.92833 0.39 0.12		2.1(0.8)	3.70(3.31)

^a ^M-Cp denotes the distance from the metal atom to the center of cyclopentadienyl ring. [∠]Cp,H denotes the angle of the C-H bond out of the cyclopentadienyl ring; this angle is defined to be positive when the C-H bonds are bent toward the metal atom. \overline{b} Reference 13. *c* Reference 12. *d* Reference 15. *f* Reference 15. *f* Reference 15. *f* Reference 1

are always slightly shorter (by only $0.001-0.002$ Å) than those for the staggered *D*⁵*^d* conformations. Necessarily, the distances (Cp-M) between the cyclopentadienyl ring center and the metal atom for the *D*⁵*^h* conformations are also slightly shorter than those for the D_{5d} conformations. There are even smaller differences between the D_{5h} and D_{5d} conformations for the C-C and C-H bond lengths (less than 0.001 Å). The differences in the angle of the H atoms out of the ring plane (∠Cp,H) are also predicted to be very small (less than 0.1°). In Table 4 the out-of-plane angle ∠Cp,H is defined to be positive when the ^C-H bonds are bent toward the metal atom. The C-H bonds are slightly bent away from the metal atom for vanadocene $(VCp₂)$ and manganocene $(MnCp₂)$ and toward the metal for ferrocene (FeCp₂) and nickelocene (NiCp₂). The ground state of MnCp2 is predicted to have high spin (sextet). We have also considered the lower spin (doublet) state, but the lowest doublet state $(^{2}B_{1}$ with C_{2v} symmetry) lies energetically higher than sextet state by 4.4 kcal/mol.

For CrCp₂, there are local minima with both D_{5h} (${}^{3}A_{1}$ [']) and D_{5d} (³A_{1g}) symmetries. The electron configurations are $(a_1')^2$ - $(a_2'')^2(e_1'')^4(e_1')^4(e_2')^2(a_1')^2$ and $(a_{1g})^2(a_{2u})^2(e_{1g})^4(e_{1u})^4(e_{2g})^2(a_{1g})^2$, respectively (Table 10). The D_{5h} structure has a lower energy than the D_{5d} structure by 0.3 kcal/mol. However, the distorted structures with C_{2v} and C_{2h} symmetries are energetically lowerlying by \sim 5 kcal/mol. The global minimum is the ³B₁ state with the C_{2v} structure (Figure 4 and Table 4). Its electron configu-

Figure 4. Distorted (from D_{5h} symmetry) equilibrium structures of chromocene. The ${}^{3}B_{1}$ and ${}^{3}A_{1}$ states are equally probable candidates for the global minimum.

ration is [...](a₁)²(a₁)(b₁). The ³A₁ state with [...](b₁)²(a₁)(a₁) configuration has an almost identical energy, but its geometry distorts from *D*⁵*^h* in the opposite direction (Figure 4). The distance between the C_1 atom and the center of the C_3-C_4 bond is 2.203 Å for the ${}^{3}A_1$ state, whereas that for the ${}^{3}B_1$ state is 2.211 Å. Our C_{2v} structures appear to be in reasonable agreement with results mentioned briefly in an earlier theoretical study by Green and Jardine.⁵² We also found other two states $({}^3A_g$ and ${}^{3}B_{g}$) with C_{2h} structure, and their geometrical parameters are also shown in Table 4. Their energies are slightly higher than those of the C_{2v} structures (Table 4).

Because of the singly occupied degenerate orbital (e₁" for D_{5h} ; e_{1g} for D_{5d}), the doublet cobaltocene (CoCp₂) should have a lower symmetry than D_{5h} or D_{5d} , due to the Jahn-Teller effect. Nevertheless, we started our geometry optimization under the constraint of the D_{5h} or D_{5d} symmetry. The total energy of the constrained *D*⁵*^h* structure is predicted to be lower than that of *D*⁵*^d* by 0.38 kcal/mol. The geometric parameters of these two stationary points are very similar (Table 4). The Co-C bond distances of the D_{5d} structure are slightly longer, and the C-C bond distances are slightly shorter. The C-H bond distances of these two structures are almost the same. The hydrogen atoms are out of the ring plane and tilt toward the cobalt atom by about 0.9°. However, because this doublet state is degenerate, the D_{5h} and D_{5d} structures of cobaltocene will distort to remove the degeneracy, according to the well-known Jahn-Teller effect. This effect reduces the D_{5h} symmetry to C_{2v} and reduces D_{5d} to C_{2h} . For each of the C_{2v} or C_{2h} structures of CoCp₂, there are two possible electronic states. With C_{2v} symmetry, these are the ²B₂ state with electron configuration [...](b₁)²(a₁)²(b₂) and the ²A₂ state with electron configuration [...](b₁)²(a₁)²(a₂). Their geometries are shown in Figure 5 and Table 4. The distance between the atom C_1 and the center of bond C_3-C_4 for the ²B₂ state is 2.225 Å, but this distance for the ²A₂ state is decreased to 2.180 Å. The energies of the ${}^{2}B_{2}$ and ${}^{2}A_{2}$ electronic states are almost identical and lower than that of the constrained *D*⁵*^h* structure by 2.15 kcal/mol, which may be regarded as a consequence of the Jahn-Teller effect. Similarly, with C_{2h} symmetry, there are two states: ${}^{2}A_{g}$ and ${}^{2}B_{g}$. The distance between atom C_1 and the C_3-C_4 side is 2.224 Å for the ²A_g state, whereas it is 2.180 Å for the ²B_g state. The energies of the 2A_g and 2B_g states are almost identical too, but the energies of the C_{2v} structures are about 0.38 kcal/mol lower than those of the *C*²*^h* structures. Thus the high-symmetry eclipsed-staggered energy difference carries over to the Jahn-Teller distorted symmetries. Because the cyclopentadienyl rings are no longer regular pentagons but twisted from a plane, there are no unique

Figure 5. Distorted (from *D*⁵*^h* symmetry) equilibrium structures of chromocene. The ${}^{2}B_{2}$ and ${}^{2}A_{2}$ states are equally probable candidates for the global minimum.

Figure 6. Molecular orbital energy level diagram for nickelocene.

out-of-plane angles available for the C_{2v} and the C_{2h} structures in Table 4.

Table 4 also lists the experimental (constrained) D_{5h} structures determined by electron diffraction for the gas-phase samples.¹¹⁻¹⁵ Compared with the electron diffraction experiments, the theoretical M-C bond distances are slightly longer, whereas the theoretical C-C or C-H bond distances are slightly shorter. The deviations for the M-C bond lengths between the theoretical D_{5h} structures and the latest experimental results are $+0.030$, $+0.031, +0.013$, and $+0.032$ Å for VCp₂, MnCp₂, FeCp₂, and NiCp2, respectively. The deviations of the average theoretical $M-C$ bond lengths for the C_{2v} structures from the experimental results are $+0.029$, and $+0.029$ Å for CrCp₂ and CoCp₂, respectively. The deviations for the C-C bond lengths are quite small, namely, -0.005 , -0.004 , 0.000 , -0.006 , -0.001 , and -0.001 Å for VCp₂, CrCp₂, MnCp₂, FeCp₂, CoCp₂, and NiCp₂, respectively. If the experimental error bars are taken into account, our theoretical C-C bond distances are perfectly matched with experiment. The comparison for the theoretical

TABLE 5: Harmonic Vibrational Frequencies (cm-**1) and Infrared Intensities (km/mol, in Parentheses) for Vanadocene Predicted at the B3LYP/DZP Level of Theory, Compared with Experiment**

					exp ^a		exp ^b			
no.		D_{5h}		D_{5d}	IR	Raman	IR			
6	a_1'	40(0)'	a_{1u}	24i						
22	e_1'	102(0)	e_{1u}	87(0)	180	183(w)				
$\overline{4}$	a_1'	237(0)	a_{1g}	235(0)		258(m)				
16	$e_1^{\prime\prime}$	290(0)	e_{1g}	291 (0)		331 (m)				
21	e_1'	360(4)	e_{1u}	350(4)	426		426(s)			
11	$a_2^{\prime\prime}$	414(11)	a_{2u}	412(11)	380		380(s)			
34	e_2''	606(0)	e_{2u}	602(0)			610 (vw)			
28	e_2	611(0)	e_{2g}	609(0)						
14	e_1''	782 (0)	e_{1g}	782 (0)						
9	a_2''	791 (248)	a_{2u}	790 (246)	780		780 (vs)			
$\overline{2}$	a_1'	801 (0)	a_{1g}	793 (0)						
19	e_1'	802 (0)	e_{1u}	794 (0)	824		803 (sh)			
33	$e_2^{\prime\prime}$	845 (0)	e_{2u}	846 (0)			880 (br)			
27	e_2'	851 (0)	e_{2g}	849 (0)						
31	$e_2^{\prime\prime}$	882 (0)	e_{2u}	879 (0)						
25	e_2 '	892 (0)	e_{2g}	880 (0)						
13	$e_1^{\prime\prime}$	1018(0)	e_{1g}	1017(0)						
18	e_1'	1021 (37)	e_{1u}	1020 (38)	1005		1005 (vs)			
30	e_2''	1067(0)	e_{2u}	1067(0)			$1047, 1055$ (m)			
24	e_2'	1070(0)	e_{2g}	1069(0)		1055(w)				
10	$a_2^{\prime\prime}$	1131 (8)	a_{2u}	1131 (8)	1107		1107(s)			
3	a_1'	1132(0)	a_{1g}	1132(0)		1106(s)				
5	${a_1}^{\prime\prime}$	1271(0)	a_{2u}	1269(0)			1260(m)			
7	a_2'	1271(0)	a_{2g}	1270(0)						
32	e_2''	1392(0)	e_{2u}	1393(0)			1350(m)			
26	e_2'	1398 (0)	e_{2g}	1396(0)		1345 (m)				
15	$e_1^{\prime\prime}$	1456(0)	e_{1g}	1456(0)						
20	e_1'	1457(1)	e_{1u}	1456(1)	1420		1425(m)			
29	e_2''	3224(0)	e_{2u}	3222(0)						
23	e_2'	3225 (0)	e_{2g}	3223(0)						
12	$e_1^{\prime\prime}$	3239 ₍₀₎	e_{1g}	3237 (0)						
17	e_1'	3239 (6)	e_{1n}	3238 (6)			3080(w)			
$\mathbf{1}$	a_1 '	3252 ₍₀₎	a_{1g}	3251(0)						
8	a_2''	3252 ₍₀₎	a_{2u}	3251(0)			3090(w)			

^a Reference 54. Infrared spectra in solution. *^b* Reference 53. Raman and infrared spectra in solid at ∼90 K.

 $C-H$ bond lengths is not as excellent as the $C-C$ bonds, but the error bars pertaining to the electron diffraction experiment for the C-H bonds are also much larger.

4. Harmonic Vibrational Frequencies for Metallocenes MCp_2 ($M = V$, Cr , Mn , Co , Ni). Tables 5-9 list the harmonic vibrational frequencies of the five metallocenes excluding ferrocene. The mode numbers in Tables 5-9 are the same as in Table 2 for ferrocene.^{9,10} The first feature seen in these tables is that for each metallocene the vibrational frequencies of the *D*⁵*^h* structure and those of the *D*⁵*^d* structure are nearly identical. (For chromocene and cobaltocene in Tables 6 and 8, we take the C_{2v} structure and the C_{2h} structure for the parallel comparison.) For most frequencies, the difference between D_{5h} and D_{5d} is just a few wavenumbers. The only eye-catching difference is that, except for MnCp₂, the D_{5d} structures (or the ²A_g state for cobaltocene and ${}^{3}A_{g}$ state for chromocene) have one small imaginary frequency v_6 (<50i cm⁻¹). This implies that the D_{5d} conformations are transition states. And this mode leads to the expected rotation of the cyclopentadienyl rings, as noted earlier for ferrocene. Thus the D_{5d} conformations fall down energetically to the D_{5h} conformations, consistent with the above comparison of the energies. For manganocene ($MnCp_2$), however, both *D*⁵*^h* and *D*⁵*^d* conformations are minima and their energy difference (0.13 kcal/mol) is less than those predicted for the other metallocenes; i.e., $MnCp₂$ *has a flat double-well potential energy curve with respect to the ring rotation. Thus*

it is concluded that both D_{5h} and D_{5d} conformations exist in the gas phase. Another feature of Tables 5-9 is that all the five metallocenes have the same pattern for their infrared spectra. For the intra-ring modes, the vibrational frequencies of the different metallocenes are similar, and the corresponding IR intensities are all comparable. This indicates that the cyclopentadienyl rings in different metallocenes inhabit very similar environments.

However, for the six lowest frequencies, which are related to the inter-ring modes, the differences among the metallocenes are substantial. This is expected, because different transition metal atoms are involved. In Tables 5-9 the experimental results are also listed.^{21,53-56} For the high frequencies (intra-ring modes), our B3LYP/DZP results are in good agreement with the available experimental data, with the average relative deviation being only about 3%, except for cobaltocene, which will be discussed below. For the low frequencies, i.e., those related to the inter-ring modes, the situation is more complicated. There are no experimental assignments for the ring rotation mode (ν_6) except for nickelocene. The ν_6 frequency for NiCp₂ is reported²¹ to be 50 cm⁻¹, which is somewhat larger than the B3LYP prediction (30 cm^{-1}). Our theoretical predictions for *^ν*²² (ring-M-ring bending mode) seem too low for all the metallocenes compared with the available experimental data. For the modes v_4 (the M-ring stretch mode) and v_{16} (ring tilt mode), our B3LYP frequencies are about $10-20%$ lower than the experimental assignments based on the Raman spectra.⁵³ For modes v_{11} and v_{21} , our B3LYP results have the reverse ordering compared with the IR spectra reported by refs 53 and 54 but are in agreement with the IR spectra reported in ref 21. By comparing experiment⁵⁴ with our theoretical IR intensities, we suggest the reversal of the experimental assignments of *ν*¹¹ and *ν*²¹ in ref 54. Overall, after this modification, the B3LYP method predicts quite reasonable vibrational frequencies for the metallocenes compared with the available experimental results. For chromocene and cobaltocene, because the structures distorts to C_{2v} and C_{2h} , the degenerate vibrational modes split. But in Tables 6 and 8, we still use the same mode numbering as those for D_{5h} and D_{5d} , for convenient comparison with the previous studies. So the mode numbers appear twice in Tables 6 and 8 if a mode is corresponding to a degenerate mode in D_{5h} or D_{5d} . The available experimental infrared spectra for cobaltocene were reported in 1975.55 For most modes, the deviations are small (10%) , but some are quite large. Note especially that the experimental assignment for v_{21} (500 cm⁻¹ for the ring-tilt mode) is 4 times larger than our B3LYP prediction, and that for v_{31} (1040 cm⁻¹ for C-H wag) is 20% too large. The deviation for v_{34} (468 cm⁻¹ for ring torsion) is ∼20% too small. These experimental assignments are suspicious to us, and further work is suggested. To our knowledge, there are no complete vibrational frequency assignments for the metallocenes except for ferrocene. Thus our present theoretical vibrational frequencies may be helpful for future studies.

5. Electron Configurations for Ferrocene. The molecular orbital energy levels for ferrocene at the B3LYP DZP level of theory may be seen in Figure 2. There are 18 electrons in the metal-ligand bonding orbitals of ferrocene, five from the *^π* orbitals of each of the cyclopentadienyl rings, and eight from the iron atom. The bonding between the Fe atom and the rings in ferrocene is necessarily dominated by the iron 3d orbitals and the cyclopentadienyl π orbitals. From Figure 2, it may be seen that the 18 electrons occupy orbitals in the order $a_1' \le a_2''$ $\langle e_1'' \rangle \langle e_1' \rangle \langle e_1' \rangle \langle e_2' \rangle$ for the D_{5h} conformation or, accordingly, a_{1g} < a_{2u} < e_{1g} < e_{1u} < a_{1g} < e_{2g} for the D_{5d} conformation.

TABLE 6: Harmonic Vibrational Frequencies (cm-**1) and Infrared Intensities (km/mol, in Parentheses) for Chromocene Predicted at the B3LYP DZP Level of Theory, Compared with Experiment**

	C_{2v}						C_{2h}				
no.		3B_1		3A_1		$^3\mathrm{A_g}$		$^3\mbox{B}_\mathrm{g}$	exp ^a IR	Raman	exp ^b $\ensuremath{\mathsf{IR}}\xspace$
				46i				41i			
28 6	b ₁	35(12) 43(0)	b ₁	25(0)	b_g	44(0) 45i	b_{g}	45i			
22	a ₂	121(0)	a_2	109(0)	a _u	113(0)	a _u	114(0)	175		
	a_1		a_1		a _u		a _u				
22	b ₁	210(32)	b ₁	201 (32)	b_u	112(0)	b_u	112(0)			
$\overline{4}$	a ₁	262(0)	a ₁	261 (0)	$a_{\rm g}$	261(0)	$a_{\rm g}$	261(0)		273(s)	
11	b ₂	317(1)	b ₂	315(1)	b_u	389 (15)	b_u	391 (15)			408 (m)
16	a ₂	323(0)	a ₂	321 ₍₀₎	a_{g}	329(0)	ag	329(0)		370 (vw)	
21	a ₁	423(9)	a ₁	423(9)	a _u	406(11)	$a_{\rm u}$	406 (11)	433		435 (m)
34	b ₂	426(1)	b ₂	424(1)	b_u	426(0)	b_u	425(0)	412		
34	a ₂	595 (0)	a ₂	590 (0)	a _u	588 (0)	a _u	591 (0)			
16	b ₂	593(0)	b ₂	594 (0)	$b_{\rm g}$	599 (0)	$b_{\rm g}$	602(0)			
28	a ₁	600(0)	a ₁	601(0)	$a_{\rm g}$	602(0)	$a_{\rm g}$	599 (0)			620 (vw)
21	b ₁	602(0)	b ₁	595 (0)	b_u	592 (0)	b_u	588 (0)			
14	b ₂	765 (40)	b ₂	763 (38)	$b_{\rm g}$	731 (0)	$b_{\rm g}$	731 (0)			800 (sh)
14	a ₂	778 (0)	a ₂	775 (0)	a_{g}	776 (0)	$a_{\rm g}$	764 (0)			
19	b ₁	778(1)	b ₁	766(0)	b_u	774 (78)	b_u	770 (76)	774		
$\overline{2}$	a_1	781 (0)	a ₁	790(1)	$a_{\rm g}$	807(0)	$a_{\rm g}$	784 (0)			765 (vs)
19	a ₁	797(1)	a ₁	809 (0)	a _u	796 (0)	$a_{\rm u}$	797 (0)			
9	b ₂	803 (102)	b ₂	801 (106)	b_u	809 (66)	b_u	810 (67)	792		
27	a_1	816(0)	a_1	850(0)	$a_{\rm g}$	849 (0)	$a_{\rm g}$	811 (0)			
27	b ₁	851 (0)	b ₁	784 (0)	$b_{\rm g}$	778 (0)	$b_{\rm g}$	849 (0)			
33	b ₂	836(2)	b ₂	842 (0)	b_u	844 (0)	b_u	837(2)			
33	a ₂	842(0)	a ₂	834 (0)	a _u	836(0)	$a_{\rm u}$	843 (0)			
31	b ₂	860(1)	b ₂	889(1)	b_u	891 (0)	b_u	857(1)			
25	a ₁	869(0)	a ₁	895 (0)	$a_{\rm g}$	893 (0)	$a_{\rm g}$	862(0)			
31	a ₂	895(0)	a ₂	856 (0)	a _u	857(0)	$a_{\rm u}$	892 (0)			
25	b ₁	903(0)	b ₁	864(0)	$b_{\rm g}$	862(0)	$b_{\rm g}$	894 (0)			
13	b ₂	1006(7)	b ₂	1005(7)	$b_{\rm g}$	989(0)	$b_{\rm g}$	989(0)		985 (w, br)	992 (vs)
13	a ₂	1007(0)	a ₂	1006(0)	a_g	1007(0)	$a_{\rm g}$	1008(0)			
18	b ₁	996 (49)	b ₁	995 (49)	b_u	1010(42)	b_u	1011(42)	994		
18	a_1	1011 (33)	a ₁	1010(33)	$a_{\rm u}$	1010(37)	a _u	1010(36)			
24	b ₁	1062(2)	b ₁	1062(1)	$b_{\rm g}$	1061(0)	$b_{\rm g}$	1061(0)		1048 , 1055 (m)	$1040, 1055$ (w)
24	a ₁	1063(1)	a ₁	1061(2)	$a_{\rm g}$	1061(0)	$a_{\rm g}$	1062(0)			
30	a ₂	1057(0)	a ₂	1065(0)	$a_{\rm u}$	1068(2)	a_{u}	1059(2)			
30	b ₂	1066(0)	b ₂	1056(0)	b_u	1058(2)	b_u	1068(2)			
10	b ₂	1120(30)	b ₂	1120 (30)	b_u	1120(30)	b_u	1120(30)	1096		
3	a ₁	1122(0)	a_1	1121(0)	$a_{\rm g}$	1122(0)	$a_{\rm g}$	1123(0)		1094 (vs)	1095
5	a ₂	1265(0)	a ₂	1265(0)	$a_{\rm u}$	1264(0)	a_{u}	1264(0)			
7	b ₁	1266(0)	b ₁	1265(0)	$b_{\rm g}$	1262(0)	$b_{\rm g}$	1262(0)			1252(w)
32	a ₂	1366(0)	a ₂	1390(0)	$a_{\rm u}$	1401(3)	$a_{\rm u}$	1377(2)			
26	b_1	1378(2)	b_1	1401(2)	$b_{\rm g}$	1392(0)	$b_{\rm g}$	1369(0)		1335 (m, br)	
32	b ₂	1391(0)	b ₂	1365(0)	b_u	1377(2)	b_u	1402(3)			
26	a ₁	1403(3)	a ₁	1378(2)	$a_{\rm g}$	1369(0)	$a_{\rm g}$	1394(0)			1340 (br)
20	a ₂	1445(0)	a ₂	1446(0)	$a_{\rm g}$	1447(0)	$a_{\rm g}$	1449(0)			
20	b ₂	1448(3)	b ₂	1445(4)	b_g	1433(0)	b_g	1431(0)			
15	b_1	1435(1)	b_1	1437(1)	b_u	1446(4)	b_u	1449(4)	1420	1408 (m, br)	1408
15	a ₁	1451(0)	a_1	1448(0)	a _u	1447(0)	a _u	1445(0)			
29	a ₂	3226(0)	a ₂	3231(0)	a _u	3230(0)	a _u	3226(0)			
29	b ₂	3232(0)	b ₂	3226(0)	b_u	3226(0)	b_u	3230(0)			
23	b_1	3227(0)	b_1	3230(0)	$b_{\rm g}$	3229(0)	$b_{\rm g}$	3227(0)			
23	a ₁	3231(0)	a ₁	3226(0)	$a_{\rm g}$	3227(0)	$a_{\rm g}$	3228(0)			
12	b ₂	3243(0)	b ₂	3242(0)	$b_{\rm g}$	3242(0)	$b_{\rm g}$	3241(0)			
12	a ₂	3244(0)	a_2	3243(0)	a_g	3242(0)	$a_{\rm g}$	3242(0)			3086 (m)
17	a ₁	3244(6)	a ₁	3243(6)	a _u	3243(5)	a _u	3243(5)			
17	b_1	3244(3)	b_1	3243(3)	b_u	3243(6)	b_u	3242(6)			
8	b ₂	3257(0)	b ₂	3256(0)	b_u	3256 (0)	b_u	3255(0)			
1	a ₁	3257(0)	a ₁	3256(0)	a _g	3256(0)	$a_{\rm g}$	3255(0)		3105 (m)	3097 (m)

^a Reference 54. Infrared spectra in solution. *^b* Reference 53. Raman and infrared spectra in solid at ∼90 K.

This ordering is different from the qualitative diagrams in refs 36a and 37, in which the highest occupied molecular orbital (HOMO) is a_1' , but in agreement with that in refe 36b. Actually, an experimental ESR study in 1970 suggested that the ordering of the highest occupied MOs of ferrocene (D_{5d}) is e_{1g}(π -Cp) < $e_{1u}(\pi - Cp) \le a_{1g}(3d) \approx e_{2g}(3d).$ ⁵⁷ The authors explicitly stated "they (a_{1g} and e_{2g} orbitals) lie close together". Because the ground state of the $Fe₂(C₅H₅)₂⁺$ cation was determined with ESR by Prins⁵⁷ to have the ²E_{2g}[(e_{2g})³(a_{1g})²] configuration, i.e., an electron was lost from the e_{2g} orbital, our theoretical orbital ordering is quite reasonable. The electronic states ${}^{1}A_{1}' (a_{1}')^{2}$ - $(e_2')^4$ for D_{5h} symmetry or ${}^1A_{1g}$ $(a_{1g})^2(e_{2g})^4$ for D_{5d} symmetry are of course consistent with the observed photoelectron spectra.58a

On the basis of the coefficients of the (Kohn-Sham) MO's, we can roughly describe the characteristic of each bonding MO

TABLE 7: Harmonic Vibrational Frequencies (cm-**1) and Infrared Intensities (km/mol, in Parentheses) for Manganocene Predicted at the B3LYP DZP Level of Theory, Compared with Experiment**

					expt ^a	exp ^b			
no.		D_{5h}		D_{5d}	IR	Raman	IR		
	6 a_1''	32(0)	a_{1u}	20(0)					
22	e_1'	26(3)	e_{1u}	23(3)					
16	e_1 "	116(0)	e_{1g}	114(0)		153(m)			
21	e_1'	189(0)	e_{1u}	185(0)					
$\overline{4}$	a_1'	219(0)	a_{1g}	219(0)		203 (m)			
11	a_2''	350 (85)	a_{2u}	348 (85)					
34	e_2 "	607(0)	e_{2u}	607(0)			620(w)		
	$28 e'_2$	615(0)	e_{2g}	613(0)		580(m)			
14	e_1''	750(0)	e_{1g}	748 (0)		807(w)			
	19 e_1'	769(0)	e_{1u}	766 (0)	775		830 (w)		
9	$a_2^{\prime\prime}$	774 (429)	a_{2u}	773 (427)	740		767 (vs)		
$\mathfrak{2}$	a_1'	784 (0)	a_{1g}	784 (0)		760(w)			
33	e_2'	849 (0)	e_{2u}	849 (0)					
27	e_2'	850 (0)	e_{2g}	850 (0)					
31	e_2''	868 (0)	e_{2u}	867(0)					
25	e_2'	877 (0)	e_{2g}	872 (0)					
13	e_1''	1017(0)	e_{1g}	1017(0)					
18	e_1'	1019 (49)	e_{1u}	1019(49)	1008		995, 1005s		
30	e_2 "	1065(0)	e_{2n}	1065(0)			1055(w)		
24	e^{\prime}	1068(0)	e_{2g}	1067(0)		1065 (m)			
10	a_2''	1132(1)	a_{2u}	1132(1)	1100		1105(w)		
3	a_1'	1134(0)	a_{1g}	1134(0)		$1108, 1113$ (s)			
5		a_1'' 1269 (0)	a_{2n}	1268(0)					
7	a_2'	1269(0)	a_{2g}	1269(0)		1230(w, br)			
32		e_2 " 1382 (0)	e_{2n}	1382(0)			1345(w)		
26	e_2'	1384(0)	e_{2g}	1384(0)		1345 (m)			
15	e_1 "	1453(0)	e_{1g}	1453(0)		1405(w)			
20	e_1'	1457(0)	e_{1u}	1456(0)	1420		1425(w)		
29		e_2 " 3218 (0)		e_{2n} 3218 (0)					
23	e_2'	3219(0)		e_{2g} 3218 (0)					
12		e_1 " 3234 (0)		e_{1g} 3234 (0)		3075 (m)			
17	e_1'	3234(6)		e_{1u} 3234 (6)			3075 (m)		
8		a_2 " 3248 (1)		a_{2u} 3248 (1)			3090(m)		
1	a_1'	3248(0)		a_{1g} 3248 (0)		3095 (m)			

^a Reference 54. Infrared spectra in solution. *^b* Reference 53. Raman and infrared spectra in solid at ∼90 K.

with the atomic basis functions, and sketches for the ferrocene orbitals are shown in Figure 3. For the *D*⁵*^h* structure, the lower a_1' molecular orbital is a bonding orbital, combining the π orbitals of the cyclopentadienyl rings with mainly the 4s and $3d_z^2$ orbitals of the Fe atom. The $a_2^{\prime\prime}$ molecular orbital is essentially a nonbonding orbital,³⁶ and it arises mainly from the π orbitals of the cyclopentadienyl rings and the $4p_z$ orbital of the Fe atom. The degenerate e_1'' molecular orbitals are effective bonding molecular orbitals because they are mainly formed with the well-matched orbital interaction between the cyclopentadienyl p orbitals and the Fe 3d*xz* or 3d*yz* orbitals. The e₁' bonding molecular orbitals arise mainly from the cyclopentadienyl π orbitals and the Fe 4p_x or 4p_y orbitals.

The higher occupied a_1' orbital is almost the pure component of the Fe $3d_z^2$, so it is essentially a nonbonding orbital. The highest occupied molecular orbital (HOMO) e_2 ['], which is doubly degenerate, is a *δ*-type weakly bonding orbital containing small a contribution of the cyclopentadienyl *π* orbital interacting with either the Fe $d_{x} - y^2$ orbital or the d_{xy} orbital. The lowest empty molecular orbital (LUMO) e₁" is the counterpart antibonding orbital containing a cyclopentadienyl *π* orbital interacting with the Fe $3d_{xz}$ or $3d_{yz}$ orbital. For the D_{5d} conformation of ferrocene, the molecular orbitals from the B3LYP DZP treatment are analogous to those for the D_{5h} conformation. The orbital energies of the LUMO and HOMO for the D_{5h} conformation are -0.006 and -0.194 au, respectively, and for the D_{5d} conformation are

 -0.006 and -0.193 au, respectively. Ferrocene is obviously quite stable because it is a closed-shell system satisfying the 18 electron rule, and the gap between its LUMO and HOMO is substantial.

We should note here that the ferrocene orbital energies are sensitive to the theoretical methods, and they are *not* in close agreement with the photoelectron spectra. For example, the ionization energies of e_{2g} and a_{1g} orbitals were assigned to be 6.88 and 7.23 eV, respectively, on the basis of the photoelectron spectra,⁵⁸ but the corresponding Kohn-Sham orbital energies predicted by the B3LYP method are only -5.28 and -6.17 eV, respectively, and those predicted by BP86 are even worse, namely, -4.22 and -4.41 eV, respectively. As pointed out by Haaland,¹⁸ Koopman theorem does not hold in these cases.

6. Electron Configurations for Other Metallocenes MCp2 $(M = V, Cr, Mn, Co, and Ni)$. The ground states of vanadocene, chromocene, and manganocene have 3, 2, and 1 electrons less than ferrocene, and the ground states of cobaltocene and nickelocene have 1 and 2 electrons more than ferrocene, respectively. The changes of the electron numbers could alter the energetic ordering of the molecular orbitals. In other words, the electron configurations of the first-row transition-metal metallocenes may not simply load the electrons into the orbitals on the basis of the ferrocene MO diagram.

For example, compared with ferrocene, triplet nickelocene $({}^3A_1)'$ for D_{5h} and ${}^3A_{1g}$ for D_{5d}) has two more electrons, which occupy the antibonding e₁" orbitals with parallel spins. The occupied e_1' orbital lies above the e_2' orbital in the D_{5h} conformation of nickelocene with the nonbonding orbitals filled by two spin-parallel electrons, and the same situation takes place in the D_{5d} conformation of nickelocene. The energy gap between the LUMO and HOMO with α spin in D_{5h} conformation nickelocene is 0.22 au, and that with β spin is 0.18 au. In the D_{5d} conformation, the energy gap is almost the same. It is obvious that the NiCp2 molecule should exhibit greater reactivity because the effect of the e₁" bonding orbitals is counteracted to some extent by the two additional electrons of the e₁" antibonding orbitals.

The DFT molecular orbital energy level diagrams for the ground-state vanadocene, chromocene, mangonocene, and cobaltocene are shown in Supporting Information, and their electron configurations are listed in Table 10. Vanadocene has a quartet electronic ground state, ${}^4A_1{}'$ for the D_{5h} structure and ${}^{4}A_{1g}$ for the D_{5d} structure. The DFT energy ordering of the vanadocene occupied orbitals (Figure S1) is the same as that for ferrocene. Three unpaired parallel spin electrons occupy the orbitals e_2' and a_1' in the D_{5h} conformation, or e_{2g} and a_{1g} in the D_{5d} conformation. The energy gaps between the LUMO and HOMO are 0.19 au for both the D_{5h} and D_{5d} conformations, still quite large.

Chromocene has a triplet electronic ground state ${}^{3}B_{1}$ for the C_{2v} structure distorted from D_{5h} symmetry. The ³A₁ state (C_{2v}) has almost the identical energy. The degenerate orbitals for *D*⁵*^h* and D_{5d} should split. The e_1' orbital components of the D_{5h} structure split into the b_2 and a_2 orbitals of C_{2v} symmetry. Interestingly, the doubly occupied a_1 orbital is the HOMO; i.e., it lies higher than the near-degenerate singly occupied orbitals a_1 and b1. In the case of chromocene, the energy gap between the LUMO and HOMO is 0.18 au for α orbitals, but it is only 0.11 au for β orbitals. So we can reasonably conceive that the β electron in the HOMO a₁ might be easily excited or lost to make some chemical reaction occur. The *C*²*^h* structures (distorted from *D*⁵*d*) have slightly higher energy, and they have very similar MO energy level diagrams (Figure S2). Because the energies

TABLE 8: Harmonic Vibrational Frequencies (cm-**1) and Infrared Intensities (km/mol) of Cobaltocene Predicted at the B3LYP DZP Level of Theory**

	C_{2v}					C_{2h}		exp ^b			
		${}^{2}B_2$		2A_2		$^2\mbox{B}_\mathrm{g}$		$^2\mathrm{A_g}$		IR $(20 °C, 77 K)$	
no. ^a											
6	a ₂	28(0)	a ₂	24(0)	a _u	35i	a _u	32i			
28	b ₁	70(2)	b ₁	72i	b_g	92i	b_{g}	96(0)			
21	a ₁	137(0)	a_1	142(0)	$a_{\rm u}$	134(0)	$a_{\rm u}$	136(0)	500	500 (m)	
21	b ₁	143(0)	b ₁	139(0)	b_u	132(0)	b_u	134(0)	500	500(m)	
16	b ₂	210(0)	b ₂	299(0)	\mathbf{b}_g	234(0)	b_g	304(0)			
16	a ₂	297(0)	a ₂	208(0)	a_{g}	301(0)	$a_{\rm g}$	209(0)			
$\overline{4}$	a ₁	254(0)	a_1	255(0)	$\rm a_{g}$	253(0)	$\rm a_{g}$	254(0)			
22	a ₁	316(5)	a_1	370(8)	$a_{\rm u}$	300(5)	$a_{\rm u}$	363(8)			
22	b ₁	377(6)	b ₁	332(3)	b_u	362(8)	b_u	298(5)			
11	b ₂	392(1)	b ₂	391(1)	b_u	388(1)	b_u	388(1)	430	430(w, br)	
34	b ₂	586(2)	b ₂	587(2)	b_u	584(3)	b_u	585 (3)	468	468(s)	
34	a ₂	587 (0)	a ₂	587(0)	$a_{\rm u}$	586(0)	$a_{\rm u}$	586(0)	468	468(s)	
28	a ₁	600(0) 752(1)	a_1	601(0)	$\rm a_{g}$	597 (0)	$\rm a_{g}$	599 (0)			
14 19	b ₂	779(5)	b ₂	826(1) 800(0)	b_g	781(0) 774(5)	b_g	821 (0) 838 (0)	820	820(w)	
27	a ₁ b ₁	783 (0)	a ₁ b ₁	781 (5)	a _u	747(0)	a _u	782 (0)			
9	b ₂	786 (153)	b ₂	785 (152)	b_g b_u	782 (155)	b_g b_u	783 (154)	782	780(s)	
$\mathfrak{2}$	a ₁	799 (0)	a ₁	847 (2)		794(0)		749 (0)			
14	a ₂	823 (0)	a_2	751 (0)	a_g a_{g}	847(0)	$a_{\rm g}$ $a_{\rm g}$	797(0)			
19	b ₁	849 (4)	b ₁	783(1)	b_u	841 (3)	b_u	775(6)	820	820(w)	
33	a ₂	838 (0)	a ₂	838 (0)	a _u	838 (0)	a _u	844(3)	860	865(s)	
33	b ₂	838 (15)	b ₂	838 (14)	b_u	838 (17)	b_u	838 (18)	860	865(s)	
27	a ₁	848 (0)	a_1	851 (2)	$\rm a_{g}$	820(0)	$\rm a_{g}$	847(0)			
31	a ₂	883 (0)	a ₂	884 (0)	a _u	884(1)	$a_{\rm u}$	886 (0)	1040	1040 (m)	
31	b ₂	888 (7)	b ₂	891 (8)	b_u	888 (6)	b_u	892 (6)	1040	1040 (m)	
25	b ₁	891 (0)	b ₁	890 (0)	b_{g}	877(0)	b_g	878 (0)			
25	a ₁	900(1)	a ₁	902(0)	a_{g}	884 (0)	$\rm a_{g}$	889 (0)			
13	a ₂	998 (0)	a ₂	1025(0)	$\rm a_{g}$	997(0)	$\rm a_{g}$	1025(0)			
13	b ₂	1024(1)	b ₂	998 (0)	b_g	1022(0)	b_g	996(0)			
18	b ₁	1001 (28)	b ₁	1026(37)	b_u	1001(28)	b_u	1028 (39)	998	1000(s)	
18	a ₁	1028 (39)	a_1	1002(27)	a _u	1028 (38)	$a_{\rm u}$	1001(28)	998	1000(s)	
24	b ₁	1045(0)	b ₁	1047(3)	b_g	1043(0)	b_g	1041(0)			
30	b ₂	1059(5)	b ₂	1059(6)	b_u	1061(4)	b_u	1062(4)	1140	1140(w)	
30	a ₂	1060(0)	a ₂	1061(0)	$a_{\rm u}$	1064(0)	$a_{\rm u}$	1063(0)	1140	1140(w)	
24	a ₁	1065(0)	a_1	1065(0)	$\rm a_{g}$	1063(0)	$\rm a_{g}$	1064(0)			
10	b ₂	1133(10)	b ₂	1133(10)	b_u	1133(11)	b_u	1133(11)	1100	1100 (m)	
3	a ₁	1133(0)	a_1	1133(0)	a_{g}	1134(0)	$\rm a_{g}$	1134(0)			
5	a ₂	1268(0)	a ₂	1269(0)	$a_{\rm u}$	1268(0)	$a_{\rm u}$	1268(0)	1255	1255(m)	
7	b ₁	1269(0)	b ₁	1269(0)	b_{g}	1267(0)	b_{g}	1268(0)			
26	b ₁	1344(1)	b ₁	1344(2)	b_{g}	1333(0)	b_g	1334(0)			
32	a ₂	1377(0)	a ₂	1378(0)	$a_{\rm u}$	1388 (2)	$a_{\rm u}$	1387(0)	1370	1370 $(m)^c$	
32	b ₂	1385 (35)	b ₂	1385 (34) 1399(0)	b_u	1394 (30)	b_u	1395 (32)	1370	1370 $(m)^c$	
26 20	a ₁	1400(2) 1435(6)	a ₁	1472(0)	$a_{\rm g}$	1391(0) 1437(0)	a_{g}	1392(0) 1474(2)	1410	1410(m)	
15	b ₁	1438(0)	b ₁	1470(0)	b_u	1438(0)	b_u	1472(0)			
15	a ₂ b ₂	1471(1)	a ₂ b ₂	1437(2)	$a_{\rm g}$	1470(0)	$a_{\rm g}$	1436(0)			
20		1474(0)		1438(7)	b_g	1474(0)	\mathbf{b}_g	1437(7)	1410	1410(m)	
29	a ₁ b ₂	3228(0)	a ₁ b ₂	3227(0)	a _u b_u	3228 (2)	a _u b_u	3228(1)			
29	a ₂	3228 (0)	a ₂	3228(0)	a _u	3229(1)	$a_{\rm u}$	3229(2)			
23	b ₁	3228 (2)	b ₁	3228(1)	$b_{\rm g}$	3228(0)	b_g	3228(0)			
23	a_1	3229(1)	a_1	3228(2)	a_{g}	3228 (0)	a_{g}	3228(0)			
12	a ₂	3240(0)	a_2	3249(0)	$a_{\rm g}$	3241 (0)	a_{g}	3249(0)			
12	b ₂	3248 (0)	b ₂	3239(0)	b_{g}	3248 (0)	b_{g}	3241(0)			
17	b_1	3241 (10)	b_1	3250(5)	b_u	3241 (10)	b_u	3249(6)			
17	a ₁	3249 (6)	a_1	3241 (10)	a _u	3249(6)	$a_{\rm u}$	3241 (10)			
8	b ₂	3257(1)	b ₂	3258(1)	b_u	3258(1)	b_u	3258(1)			
$\mathbf{1}$	a ₁	3258 (0)	a_1	3259(0)	a_{g}	3258 (0)	$a_{\rm g}$	3258 (0)			

^a For comparison with other work, the numbering here is taken from *D*⁵*^h* and *D*⁵*^d* symmetry. Some numbers appear twice if they correspond to the degenerate modes in *D*⁵*^h* and *D*⁵*^d* symmetry. *^b* Reference 55. Some frequencies repeat in this table because the mode number appears twice.*^c* In ref 55, there are three bands (1335 (w), 1350 (m), and 1370 (m)) for this assignment.

for the ${}^{3}B_1$ and ${}^{3}A_1$ states are so close, experimentalists may observe a *D*⁵*^h* structure, which is the average of these two equilibrium structures.

Though manganocene is only one electron short of ferrocene, it has five unpaired electrons in its ${}^{6}A_1{}'$ electronic ground state for *D*⁵*^h* and 6A1g for *D*⁵*^d* (Figure S3). (As mentioned above, the doublet manganocene is predicted to lie energetically higher than the sextet by more than 5 kcal/mol.) The degenerate antibonding orbital e_1'' in D_{5h} (or e_{1g} in D_{5d}) is occupied by two electrons, and the bonding orbitals $(a_1)'$ and e_2') are similarly half-occupied. Compared with ferrocene in Figure 2, the order of the α orbitals e₂['] and a_1 ['] in D_{5h} (or e_{2g} and a_{1g} in D_{5d}) is exchanged. The energy gaps in the *D*⁵*^h* conformation of manganocene between LUMO and HOMO are 0.19 au for α orbitals, and 0.18 au for β orbitals. These energy gaps in the *D*⁵*^d* conformation are comparable to those in *D*⁵*h*. Because the

TABLE 9: Harmonic Vibrational Frequencies (cm-**1) and Infrared Intensities (km/mol, in Parentheses) of Nickelocene Predicted at the B3LYP DZP Level of Theory, Compared with Experiment**

no.		D_{5h}		D_{5d}	exp ^a IR	exp ^b IR	exp ^d IR or Raman
6	a_1''	30(0)	a_{1u}	25i			50
22	e_1'	116(0)	e_{1u}	115(0)	170		132, 135
16	$e_1^{\prime\prime}$	171(0)	e_{1g}	169(0)			205, 213
$\overline{4}$	a_1'	234(0)	a_{1g}	234(0)			252
21	e_1'	249(1)	e_{1u}	246(1)	345		270
11	$a_2^{\prime\prime}$	358 (20)	a_{2u}	356 (20)	280		358
34	e_2''	596 (0)	e_{2u}	597 (0)		500(w)	
28	e_2'	609(0)	e_{2g}	606(0)			
14	e_1 "	768(0)	e_{1g}	766 (0)			
9	$a_2^{\prime\prime}$	780 (253)	a_{2u}	778 (254)	780	810(s)	
$\overline{2}$	a_1'	791 (0)	a_{1g}	790 (0)			
19	e_1'	793 (2)	e_{1u}	789(2)	800	842 (w)	
33	e_2 "	844 (0)	e_{2u}	844 (0)			
27	e_2'	850 (0)	e_{2g}	849 (0)			
31	$\mathsf{e_2}^{\prime\prime}$	874 (0)	e_{2u}	876 (0)			
25	e_2'	888 (0)	e_{2g}	878 (0)			
13	$e_1^{\prime\prime}$	1017(0)	$e_{\rm 1g}$	1017(0)			
18	e_1'	1020(39)	e_{1u}	1019 (39)	1005	1000(s)	
30	e_2''	1061(0)	e_{2u}	1063(0)		1052 (m)	
24	e_2'	1066(0)	e_{2g}	1065(0)			
10	${a_2}^{\prime\prime}$	1136(1)	a_{2u}	1136(1)	1110	1110(m)	
3	a_1'	1137(0)	a_{1g}	1138 (0)			
5	a_1''	1270(0)	a_{2u}	1270(0)		1252(m)	
7	a_2'	1271(0)	a_{2g}	1270(0)			
32	$e_2^{\prime\prime}$	1376(0)	e_{2u}	1378 (0)		1335(w)	
26	e^{\prime}	1383(0)	e_{2g}	1381 (0)			
15	e_1 "	1456(0)	e_{1g}	1456(0)			
20	e_1'	1458(1)	e_{1u}	1458(1)	1415	1422(m)	
29	$\mathsf{e_2}^{\prime\prime}$	3228(0)	e_{2u}	3229(0)		3104, 3112 $(s)^c$	
23	e_2'	3228(0)	e_{2g}	3229(0)			
12	$e_1^{\prime\prime}$	3243(0)	e_{1g}	3244(0)			
17	e_1'	3244 (7)	e_{1u}	3245(7)		3075 (m)	
8	a_2''	3256(1)	a_{2u}	3257(1)			
$\mathbf{1}$	a_1'	3257(0)	a_{1g}	3257(0)			

^a Reference 54. Infrared spectra in solution. *^b* Reference 56. Infrared spectra of polycrystalline, $T = 20^{\circ}$ C. The fundamental modes that are forbidden in the gas phase by symmetry (e.g., e_2 " or e_{2u}) appear in the solid state. c Reference 56. Infrared spectra of polycrystalline, $T = 77$ K. *^d* Reference 21. Infrared and Raman spectra (at 300 K) of crystal.

molecule has so many unpaired electrons and the HOMO is antibonding, the chemical reactivity should be significant.

For the cobaltocene molecule, because the last electron occupies the $D_{2h} e_1''$ antibonding orbital (or the e_{1g} antibonding

orbital for the D_{5d} structure), the degenerate orbitals should split, and the molecule should appropriately lower its symmetry according to the Jahn-Teller effect. For the C_{2v} conformation of cobaltocene, this unpaired electron could occupy either the $b₂$ orbital or $a₂$, and the electronic states would be accordingly either ${}^{2}B_{2}$ or ${}^{2}A_{2}$ (Figure S4). However, these two states are found to have almost the identical total energies, the ${}^{2}B_{2}$ state lying lower by less than 0.006 kcal/mol. For the ${}^{2}B_{2}$ state, the energy gap between the LUMO and HOMO of the α orbitals is quite small (0.09 au) but is substantial (0.18 au) for the β orbitals. The ${}^{2}A_2$ state has almost the same energy gap. Likewise, for the *C*²*^h* conformation, there are two near-degenerate electronic states: ${}^{2}A_{g}$ and ${}^{2}B_{g}$. The ${}^{2}A_{g}$ state has the slightly lower energy. The energy gap between the LUMO and HOMO for the α orbitals is 0.10 au but is 0.18 au for the β orbitals. The ${}^{2}B_{g}$ electronic state has a similar diagram with comparable energy gap between LUMO and HOMO. Compared with ferrocene, because the additional electron occupies the antibonding orbital and the energy gaps are smaller, cobaltocene could have considerable chemical reactivity. Because the energy difference between the ${}^{2}B_{2}$ and ${}^{2}A_{2}$ states is negligibly small (<0.006 kcal/mol), they can transit to each other easily and may exist simultaneously. Practically, it should be hard to distinguish the ${}^{2}B_{2}$ and ${}^{2}A_{2}$ states in the laboratory. Like chromocene, the experimentalist may observe an average D_{5h} structure.

From the analysis of the electron configurations of metallocenes, we can predict some geometric characteristics for these compounds. The B3LYP method predicts the Fe-Cp distance of eclipsed (D_{5h}) ferrocene to be 1.68 Å (Table 1), whereas the ^M-Cp distances for other metallocenes are all longer (Table 4). For the ²B₂ state of CoCp₂, the Co-Cp distance is ~1.77 Å (Table 4), which is 0.09 Å longer than that in ferrocene. This is because one more electron occupies the antibonding b_2 orbital (one of the splitting e_1 " orbitals), which weakens the interaction between the Co atom and the rings. Similarly, for nickelocene there are two electrons on the antibonding e_1 " orbital, which makes the Ni-Cp distance in ${}^{3}A_{1}$ ' NiCp₂ even longer (1.87 Å in Table 4). Compared with $FeCp₂$, there are two electrons less on the bonding e_2' orbitals for $CrCp_2$, and one electron less occupies the weakly bonding a_1' orbital for VCD_2 . This makes the Cr-Cp and V-Cp distances also longer (1.97 Å for D_{5h} VCp₂ and 1.90 Å for D_{5h} CrCp₂). For ${}^{6}A_{1}$ ['] manganocene, because there are three fewer electrons in the bonding orbitals (a_1) and e_2) and two more electrons in the antibonding orbitals

TABLE 10: Electron Configurations for the Six Metallocenes (MCp₂) Studied Here

	\circ			
MCp ₂	symmetry	valence electrons	electronic state	electron configuration
VCp ₂	D_{5h}	15	$4A_1'$	$(a_1')^2 (a_2'')^2 (e_1'')^4 (e_1')^4 (a_1')(e_2')^2$
	D_{5d}		${}^4A_{1g}$	$(a_{1g})^2 (a_{2u})^2 (e_{1g})^4 (e_{1u})^4 (a_{1g}) (e_{2g})^2$
CrCp ₂	D_{5h}	16	$3A_1$	$(a_1')^2(a_2'')^2(e_1'')^4(e_1')^4(e_2')^2(a_1')^2$
	D_{5d}		${}^3A_{1g}$	$(a_{1g})^2 (a_{2u})^2 (e_{1g})^4 (e_{1u})^4 (e_{2g})^2 (a_{1g})^2$
	C_{2v}		3B_1	$(a_1)^2 (b_2)^2 (a_2)^2 (b_2)^2 (a_1)^2 (b_1)^2 (a_1)^2 (a_1) (b_1)$
			3A_1	$(a_1)^2 (b_2)^2 (a_2)^2 (b_2)^2 (a_1)^2 (b_1)^2 (b_1)^2 (a_1)^2$
	C_{2h}		${}^{3}A_{g}$	$(a_g)^2 (b_u)^2 (a_g)^2 (b_g)^2 (a_u)^2 (b_u)^2 (b_g)^2 (a_g) (a_g)$
			3B_g	$(a_g)^2 (b_u)^2 (a_g)^2 (b_g)^2 (a_u)^2 (b_u)^2 (a_g)^2 (a_g) (b_g)$
MnCp ₂	D_{5h}	17	$6A_1'$	$(a_1')^2(a_2'')^2(e_1'')^4(e_1')^4(e_2')^2(a_1')(e_1'')^2$
	D_{5d}		${}^6\mathrm{A}_{1\mathrm{g}}$	$(a_{1g})^2 (a_{2u})^2 (e_{1g})^4 (e_{1u})^4 (e_{2g})^2 (a_{1g}) (e_{1g})^2$
FeCp ₂	D_{5h}	18	$^1A_1'$	$(a_1')^2(a_2'')^2(e_1'')^4(e_1')^4(a_1')^2(e_2')^4$
	D_{5d}		$^1\!A_{1g}$ $^2\!E_1$	$(a_{1g})^2 (a_{2u})^2 (e_{1g})^4 (e_{1u})^4 (a_{1g})^2 (e_{2g})^4$
CoCp ₂	D_{5h}	19		$(a_1')^2(a_2'')^2(e_1'')^4(e_1')^4(a_1')^2(e_2')^4(e_1'')$
	D_{5d}		${}^{2}E_{1g}$	$(a_{1g})^2 (a_{2u})^2 (e_{1g})^4 (e_{1u})^4 (a_{1g})^2 (e_{2g})^4 (e_{1g})$
	C_{2v}		${}^{2}B_{2}$	$(a_1)^2 (b_2)^2 (a_2)^2 (b_2)^2 (a_1)^2 (b_1)^2 (a_1)^2 (b_1)^2 (a_1)^2 (b_2)$
			${}^2\mathrm{A}_2$	$(a_1)^2 (b_2)^2 (a_2)^2 (b_2)^2 (a_1)^2 (b_1)^2 (a_1)^2 (b_1)^2 (a_1)^2 (a_2)$
	C_{2h}		$^2\mathrm{A_g}$	$(a_g)^2 (b_u)^2 (a_g)^2 (b_g)^2 (a_u)^2 (b_u)^2 (a_g)^2 (b_g)^2 (a_g)^2 (a_g)$
			${}^{2}B_{g}$	$(a_g)^2 (b_u)^2 (a_g)^2 (b_g)^2 (a_u)^2 (b_u)^2 (a_g)^2 (b_g)^2 (a_g)^2 (b_g)$
NiCp ₂	D_{5h}	20	$\overline{A_1}$	$(a_1')^2(a_2'')^2(e_1'')^4(a_1')^2(e_2')^4(e_1')^4(e_1'')^2$
	D_{5d}		${}^3A_{1g}$	$(a_{1g})^2 (a_{2u})^2 (e_{1g})^4 (a_{1g})^2 (e_{2g})^4 (e_{1u})^4 (e_{1g})^2$

 (e_1'') than ferrocene, the Mn-Cp distance is expected to be even longer. This is confirmed by our B3LYP Mn-Cp distance, which is very long (2.08 Å, Table 4).

Let us also examine the relationship between the electron configuration and the ∠Cp,H angles. To have more effective bonding between the metal atom and the cyclopentadienyl rings, all the p*^z* orbitals of the carbon atoms are no longer perpendicular to the ring planes but tilt slightly toward the molecular center, and the trigonal hybridization of the C atoms on the rings should be accordingly modified.¹⁸ Consequently, the C-H bonds should tilt slightly toward the metal atom, and this is why the predicted \angle Cp,H angle ranges from 0.9° to 1.6° in ferrocene with the five DFT methods. For other metallocenes, the ∠Cp,H angle is less than that of ferrocene, due to less effective bonding between the metal atom and the rings. For the D_{5h} CoCp₂, because of the electron in the antibonding e₁″ orbital, the ∠Cp,H angle predicted by B3LYP decreases from 1.2° to 0.9° (Table 4). For the D_{5h} NiCp₂, the ∠Cp,H angle further decreases to 0.5°, because there are two electrons in the e_1 " antibonding orbitals. For D_{5h} CrCp₂, two fewer electrons are on the bonding e_2 ['] orbital than ferrocene, and the \angle Cp,H angle essentially goes to zero. The experimental result¹³ (2.9°) for CrCp₂ thus seems too large, even when the substantial error bars (1.1°) are taken into account. The ∠Cp,H angle for VCp2 becomes negative, because there are three fewer electrons in the bonding orbitals (e_2) and a_1' , compared with ferrocene. For the ${}^6A_1'$ MnCp₂ ground state, there are three electrons missing in the bonding orbitals $(e_2$ ['] and a_1') and two electrons occupied in the antibonding orbital (e1′′). This electronic configuration is quite different from that of ferrocene, and consequently the C-H bonds tilt away from the central Mn atom by 0.76° for the D_{5h} structure (or 0.84° for *D*⁵*d*).

Concluding Remarks

Density functional studies for the first-row transition-metal metallocenes, MCp_2 ($M = V$, Cr, Mn, Fe, Co, and Ni), demonstrate that metallocenes slightly favor the *D*⁵*^h* conformations for the free molecules. The present theoretical vibrational analyses confirm that the D_{5h} conformations for the metallocenes are usually genuine minima and have lower energies than the *D*⁵*^d* conformations. But the *D*⁵*^d* conformations will be accessed because the energy differences between D_{5h} and D_{5d} are very small. For MnCp₂, the D_{5h} and D_{5d} conformations are both minima and have almost identical total energies. In the cases of CrCp₂ and CoCp₂, the D_{5h} structure distorts to C_{2v} and the D_{5d} structure distorts to C_{2h} , due to the Jahn-Teller effect. Each symmetry $(C_{2v}$ or C_{2h}) has two near-degenerate electronic states, distorted in opposite directions (the ${}^{3}B_{1}$ and ${}^{3}A_{1}$ states for CrCp₂, and ${}^{2}B_{2}$ and ${}^{2}A_{2}$ for CoCp₂). The states with C_{2v} symmetry (derived from D_{5h}) lie lower energetically than those with C_{2h} structures.

In this work we have reported consistent DFT MO energy level diagrams (mostly in the Supporting Information) for the metallocenes. The MO energy level orderings are not necessarily the same as that for ferrocene. Table 10 lists the electron configurations for all the metallocenes. The electron configurations and the MO energy levels are important in discussing the bonding characteristics in the metallocenes, as well as their chemical reactivities. This of course raises the question, "What is known from experiment about the reactivities of metallocenes?" In his 1998 book,⁵⁹ Long gives a good review of the properties of metallocenes. The cyclopentadienyl rings in ferrocene are reactive in a manner much like benzene. Ferrocene is known to be relatively stable but reactive toward electrophilic

substitution, Friedel-Crafts acylation, and metalation reactions. Ferrocene is also readily oxidized to ferrocenium. The chemical reactivity of other metallocenes is greater but varies widely across the series and is dominated by the number of valence electrons each compound possesses, due to the absence of the stable 18-electron structure of ferrocene. Vanadocene has a high reactivity, acting like a carbene in some respects. It is very air sensitive in solution and in the solid state. Chromocene is unstable and air sensitive but upon survival undergoes a typical range of reactions. Manganocene possesses significant ionic character and as such is quite reactive toward atmospheric oxygen, and ferrocene is liberated from a reaction of manganocenes with $FeCl₂$ in THF. Cobaltocene acts as a powerful reducing agent. Electrophilic substitution reactions of cobaltocene lead to oxidation to form cobaltocenium salts, but milder electrophiles such as alkyl halides can lead to the formation of substituted cyclopentadiene complexes. Nickelocene is easily oxidized to the nickelocenium ion. The reactivity of nickelocene generally reflects the tendency of the Ni atom to achieve the 18-electron configuration. As nickelocene is easily oxidized, there is not the extensive aromatic substitution chemistry compared to ferrocene. Although it is not straightforward to compare the reactivity for all the metallocenes quantitatively on the basis of the experimental facts,59 it is clear that the other five metallocenes are more reactive than ferrocene, the same conclusion drawn from theoretical studies.

We have also reported the harmonic vibrational frequencies for metallocenes. Because there are no complete assignments for these metallocenes except ferrocene, our theoretical assignments should be helpful for future laboratory studies.

Acknowledgment. This research was supported by the U.S. National Science Foundation, Grant No. CHE-0136186.

Supporting Information Available: Energy level diagrams. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Kealy, T. J.; Pauson, P. L. *Nature* **1951**, *168*, 1039.

(2) Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. *J. Chem. Soc*. **1952**, 632.

(3) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. *J. Am. Chem. Soc*. **1952**, *74*, 2125.

(4) Fischer, E. O.; Pfab, W. Z. *Naturforsch.* **1952**, *B7*, 378.

(5) Woodward, R. B.; Rosenblum, M.; Whiting, M. C. *J. Am. Chem. Soc*. **1952**, *74*, 3458.

(6) Dunitz, J. D.; Orgel, L. E.; Rich, A. *Acta Crystallogr*. **1956**, *9*, 373.

(7) Bohn, R. K.; Haaland, A. *J. Organomet. Chem*. **1966,** *5*, 470.

(8) Haaland, A.; Nilsson, J. E. *Acta Chem. Scand*. **1968**, *22*, 2653.

(9) (a) Lippincott, E. R.; Nelson, R. D. *J. Am. Chem. Soc*. **1955**, *77*, 4990. (b) Lippincott, E. R.; Nelson, R. D. *Spectrochim. Acta* **1958**, *10*, 307.

(10) (a) Bodenheimer, J. S.; Loewenthal, E.; Low, W. *Chem. Phys. Lett.* **1969**, *3*, 715. (b) Bodenheimer, J. S.; Low, W. *Spectrochim. Acta* **1973**, *29A*, 1733.

(11) Hedberg, L.; Hedberg, K. *J. Chem. Phys*. **1970**, *53*, 1228.

(12) (a)Haaland, A. *Top. Curr. Chem*. **1975**, *53*, 1. (b) Haaland, A. *Inorg. Nucl. Chem. Lett*. **1979**, *15*, 267.

(13) (a) Haaland, A.; Lusztyk, J.; Novak, D. P.; *J. C. S. Chem. Commun.* **1974**, 54. (b) Gard, E.; Haaland, A.; Novak, D. P.; Seip, R. *J. Organomet. Chem*. **1975**, *88*, 181.

(14) Hedberg, A. K.; Hedberg, L.; Hedberg, K. *J. Chem. Phys*. **1975**, *63*, 1262.

(15) Almenningen, A.; Gard, E.; Haaland, A. *J. Organomet. Chem*. **1976**, *107*, 273.

(16) (a) Seilar, P.; Dunitz, J. D. *Acta Crystallogr*. **1979**, *B35*, 1068. (b) Takusagawa, F.; Koetzle, T. F. *Acta Crystallogr*. **1979**, *B35*, 1074.

(17) Muraoka, P. T.; Bynn, D.; Zink, J. I. *J. Phys. Chem*. **2001**, 105, 8665.

(18) Haaland, A. *Acc. Chem. Res*. **1979**, *12*, 415.

(19) Almlöf, J.; Faegri, K.; Schilling, B. E. R. Lüthi, H. P. *Chem. Phys. Lett*. **1984**, *106*, 266.

(20) Roginski, R. T.; Moroz, A.; Hendrickson, D. N.; Drickamer, H. G. *J. Phys. Chem*. **1988**, *92*, 4319.

(21) Chhor, K.; Lucazeau, G. *J. Raman Spectrocs.* **1981**, *11*, 183.

(22) (a) Shustorovitch, E. M.; Dyatkina, M. E. *Dokl. Akad. Nauk. USSR* **1959**, *123*, 1234. (b) Shustorovitch, E. M.; Dyatkina, M. E. *J. Strukt. Chem*. (*USSR*) **1960**, *1*, 98.

(23) Armstrong, D. R.; Fortune, R.; Perkins, P. G. *J. Organomet. Chem*. **1976**, *111*, 197.

(24) Clack, D. W.; Qarren, K. D. *J. Organomet. Chem*. **1978**, *152*, C60. (25) Weber, J.; Goursot, A.; Penigault, E.; Ammeter, J. H.; Bachmann,

J. *J. Am. Chem. Soc*. **1982**, *104*, 1491.

(26) Aleksanyan, V. T.; Greenwald, I. I. *J. Mol. Struct.* (*THEOCHEM*) **1982**, *90*, 35.

(27) (a) Lüthi, H. P.; Ammeter, J. H. *J. Chem. Phys.* **1982**, 77, 2002. (b) Lüthi, H. P.; Siegbahn, P. E. M.; Almlöf, J.; Faegri, K.; Heiberg, A.

Chem. Phys. Lett. **1984**, *111*, 1.

(28) Rösch, N.; Jörg, H. *J. Chem. Phys.* **1986**, 84, 5967. (29) Park, C.; Almlo¨f, J. *J. Chem. Phys*. **1991**, *95*, 1829.

(30) Pierloot, K.; Persson, B. J.; Roos, B. O. *J. Phys. Chem*. **1995**, *99*, 3465.

(31) Koch, H.; Jorgensen, P.; Helgaker, T. *J. Chem. Phys*. **1996**, *104*, 9528.

(32) (a) Fan, L.; Ziegler, T. *J. Chem. Phys.* **1991**, 95, 7401. (b) Bérces, A.; Ziegler, T.; Fan, L. *J. Phys. Chem*. **1994**, *98*, 1584.

(33) Mayor-Lo´pez, M. J.; Weber, J. *Chem. Phys. Lett*. **1997**, *281*, 226.

(34) Matsuzawa, N.; Seto, J. *J. Phys. Chem*. *A* **1997**, *101*, 9391.

(35) Schreckenbach, G. *J*. *Chem*. *Phys.* **1999**, *110*, 11936. (36) (a) Cotton, F. A. *Ad*V*anced Inorganic Chemistry*, 6th ed.; John Wiley & Sons: 1999; p 686. (b) Cotton, F. A. *Chemical Applications of*

Group Theory, 3rd ed.; John Wiley & Sons: 1990; p 245.

(37) Long, N. J. *Metallocenes*: *An Introduction to Sandwich Complexes*; Blackwell Science Ltd.: Oxford, U.K., 1998; p 82.

(38) Long, N. J. *Metallocenes*: *An Introduction to Sandwich Complexes*; Blackwell Science Ltd.: Oxford, U.K., 1998; p 84.

(39) Dunning, T. H. *J. Chem. Phys*. **1970**, *53*, 2823.

(40) Huzinaga, S. *J. Chem. Phys*. **1965**, *42*, 1293.

(41) Wachters, A. J. H. *J. Chem. Phys*. **1970**, *52*, 1033.

(42) Hood, D. M.; Pitzer, R. M.; Schaefer, H. F. *J. Chem. Phys*. **1979**, *71*, 705.

(43) Ziegler, T. *Can. J. Chem*. **1995**, *73*, 743.

(44) Becke, A. D. *J. Chem. Phys*. **1993**, *98*, 5648.

(45) Lee, C.; Yang, W.; Parr, R. G. *Phys. Re*V. *^B* **¹⁹⁸⁸**, *³⁷*, 785.

(46) The functional actually employed by the keyword BHandHLYP to Gaussian94 is: $0.5*Ex(LSDA) + 0.5*Ex(HF) + 0.5*DeltaEx(B88) +$ Ec(LYP).

(47) Becke, A. D. *Phys. Re*V*. A* **¹⁹⁸⁸**, *³⁸*, 3098.

(48) Perdew, J. P. *Phys. Re*V*. B* **¹⁹⁸⁶**, *³³*, 8822.

(49) (a) Slater, J. C. *Quantum Theory of Molecules and Solids*; McGraw-Hill: New York, 1974; Vol. 4. (b) Vosko, S. H.; Wilk, L.; Nusair, M. *Can. J. Phys*. **1980**, *58*, 1200.

(50) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Revision E.1; Gaussian, Inc.: Pittsburgh, PA, 1995.

(51) Kemner, E.; de Schepper, I. M.; Kearley, G. J.; Jayasooriya, U. A. *J. Chem. Phys*. **2000**, *112*, 10926.

(52) Green, J. C.; Jardine, C. N. *J. Chem. Soc.*, *Dalton Trans*. **1999**, 3767.

(53) Aleksanyan, V. T.; Lokshin, B. V.; Borisov, G. K.; Devyatykh, G. G.; Smirnova, A. S.; Nazarova, R. V.; Koningstein, J. A.; Gächter, B. F. J. *Organomet. Chem*. **1977**, *124*, 293.

(54) Aleksanyan, V. T.; Greenwald, I. I. *J. Mol. Struct*. **1982**, *90*, 35. (55) Bohm, V.; Gaechter, B. F.; Shushani, M.; Koningstein, J. A.; Smirnova, E. M.; Kimel'fel'd, Ya. M.; Bykova, E. V.; Aleksanyan, V. T. *Iz*V*. Akad. Nauk SSSR*, *Ser. Khim.* **¹⁹⁷⁵**, 572.

(56) Kimel'fel'd, Ya. M.; Smirnova, E. M.; Aleksanyan, V. T. *J. Mol. Struct*. **1973**, *19*, 329.

(57) Prins, R. *Mol. Phys*. **1970**, *19*, 603.

(58) (a) Evans, S.; Green, M. L. H.; Jewitt, B.; Orchard, A. F.; Pygall,

C. F. *J. Chem. Soc.*, *Faraday Trans*. *2* **1972**, *68*, 1847. (b) Evans, S.; Green,

M. L. H.; Jewitt, B.; King. G. H.; Orchard, A. F. *J. Chem. Soc.*, *Faraday Trans*. *2* **1974**, *70*, 356.

(59) Long, N. J. *Metallocenes*: *An Introduction to Sandwich Complexes*; Blackwell Science Ltd., Oxford, U.K., 1998; Chapters 2 and 4.